Dynamic water patterns change the stability of the collapsed filter conformation of the KcsA K+ channel
نویسنده
چکیده
The selectivity filter of the KcsA K+ channel has two typical conformations-the conductive and the collapsed conformations, respectively. The transition from the conductive to the collapsed filter conformation can represent the process of inactivation that depends on many environmental factors. Water molecules permeating behind the filter can influence the collapsed filter stability. Here we perform the molecular dynamics simulations to study the stability of the collapsed filter of the KcsA K+ channel under the different water patterns. We find that the water patterns are dynamic behind the collapsed filter and the filter stability increases with the increasing number of water molecules. In addition, the stability increases significantly when water molecules distribute uniformly behind the four monomeric filter chains, and the stability is compromised if water molecules only cluster behind one or two adjacent filter chains. The altered filter stabilities thus suggest that the collapsed filter can inactivate gradually under the dynamic water patterns. We also demonstrate how the different water patterns affect the filter recovery from the collapsed conformation.
منابع مشابه
Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy
The X-ray structure of KcsA, a eubacterial potassium channel, displays a selectivity filter composed of four parallel peptide strands. The backbone carbonyl oxygen atoms of these strands solvate multiple K(+) ions. KcsA structures show different distributions of ions within the selectivity filter in solutions containing different cations. To assess the interactions of cations with the selectivi...
متن کاملSurface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field.
Surface-enhanced IR absorption spectroscopy (SEIRAS) is a powerful tool for studying the structure of molecules adsorbed on an electrode surface (ATR-SEIRA). Coupled with an electrochemical system, structural changes induced by changes in the electric field can be detected. All the membrane proteins are subjected to the effect of membrane electric field, but conformational changes at different ...
متن کاملMechanism for selectivity-inactivation coupling in KcsA potassium channels.
Structures of the prokaryotic K(+) channel, KcsA, highlight the role of the selectivity filter carbonyls from the GYG signature sequence in determining a highly selective pore, but channels displaying this sequence vary widely in their cation selectivity. Furthermore, variable selectivity can be found within the same channel during a process called C-type inactivation. We investigated the mecha...
متن کاملProtonation state of E71 in KcsA and its role for channel collapse and inactivation.
The prototypical prokaryotic potassium channel KcsA alters its pore depending on the ambient potassium; at high potassium, it exists in a conductive form, and at low potassium, it collapses into a nonconductive structure with reduced ion occupancy. We present solid-state NMR studies of KcsA in which we test the hypothesis that an important channel-inactivation process, known as C-type inactivat...
متن کاملFunctional equilibrium of the KcsA structure revealed by NMR.
KcsA is a tetrameric K(+) channel that is activated by acidic pH. Under open conditions of the helix bundle crossing, the selectivity filter undergoes an equilibrium between permeable and impermeable conformations. Here we report that the population of the permeable conformation (p(perm)) positively correlates with the tetrameric stability and that the population in reconstituted high density l...
متن کامل